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Single Image Super-Resolution (SR)

> Most approaches (such as ESRGAN) assume an ideal Bicubic downsampling kernel, which is
different from real degradations.
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Our Goal — Real-World Blind Super-Resolution

v~ We extend the powerful ESRGAN to a practical restoration application — Real-ESRGAN.

Real-ESRGAN aims at developing practical algorithms for general image restoration.
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Challenges

 Unknown and complex degradations

e Usually, paired training data with similar degradations to real scenarios is required
to train the networks.
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’Synthe5|ze paired data with \
: classical operators and generalize
' trained models to real

' degradations

/ Directly learn degradation

distributions and then

. synthesize paired training

data .
e.g., Cycle-in-Cycle GAN?! | 1
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* Deal with diverse degraded images in one unified network

' Capture paired data with
' specific cameras followed
by alignments

e.g., RealSR!!
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Classical Degradation Model
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Synthetic Degradations




Complicated Combinations of Degradation Processes

The real complex degradations usually come from complicate combinations of different degradation processes,
such as imaging system of cameras, image editing, and Internet transmission.
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High-Order Degradation Process
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* The “high-order” here is different from that used in mathematical functions. It mainly refers to the implementation time of the same operation.



Sinc Filter for Ringing and Over-shoot Artifacts




Real-ESRGAN Architecture
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Qualitative Comparisons
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Qualitative Comparisons
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Quantitative Comparisons

* We provide a non-reference image quality assessment — NIQE for reference.

* Existing metrics for perceptual quality cannot well reflect the actual human perceptual
preferences on the fine-grained scale.

* Though our Real-ESRGAN+ does not optimize for NIQE scores, it still produces lower NIQE
scores on most testing datasets.

Table 1: NIQE scores on several diverse testing datasets with real-world images. The lower, the better.

Bicubic ESRGAN [10] DAN[7] RealSR[5] CDC[!I] BSRGAN[IZ] Real-ESRGAN Real-ESRGAN+
RealSR-Canon [2] | 6.1269  6.7715 6.5282 6.8692 6.1488 5.7489 4.5899 4.5314
RealSR-Nikon [?] | 6.3607  6.7480 6.6063 6.7390 6.3265 5.9920 5.0753 5.0247
DRealSR [11] 6.5766  8.6335 7.0720 7.7213 6.6359 6.1362 4.9796 4.8458
DPED-iphone [4] | 6.0121  5.7363 6.1414 5.5855 6.2738 5.9906 5.4352 5.2631
OST300 [Y] 4.4440  3.5245 50232 4.5715 4.7441 4.1662 2.8659 2.8191
ImageNet val [3] 74985  3.6474 6.0932 3.8303 7.0441 4.3528 4.8580 4.6448
ADE20K val [13] | 7.5239  3.6905 6.3839 3.4102 6.9219 3.9434 3.7886 3.5778




Qualitative Comparisons with Sliding Bar




Optimize for Anime Images




Qualitative Comparison with Sliding Bar for Amine Images
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Qualitative Comparison with Sliding Bar for Amine Images




* Twisted lines
* Unpleasant artifacts caused by GAN training
* Unknown and out-of-distribution degradations
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Beginnings of Practical Restoration

* Real-ESRGAN aims at developing practical algorithms
for general image restoration

* JI Xiaozhong etc.

* RealSR: Real-World Super-Resolution via Kernel Estimation and Noise
Injection

* ZHANG Kai etc.

* BSRGAN: Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution

* LIANG Jinyun etc.

* SwinlR: Image Restoration Using Swin Transformer




O GitHub

e Full training and testing codes

* Colab Demo for Real-ESRGAN Ra(eBN0eIs[= NN e6] s

* Portable Windows / Linux / MacOS
executable files for Intel /AMD/Nvidia GPU,
which is based on Tencent ncnn
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We also incorporate the face restoration method —
GFPGAN, to improve the face performance
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