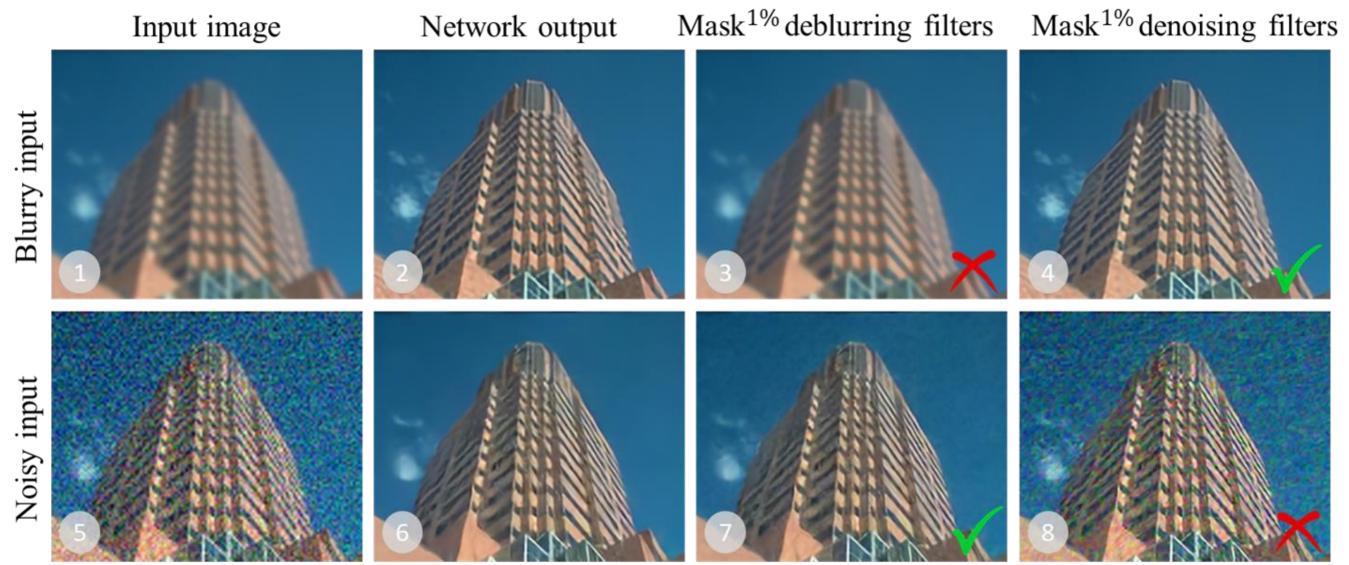

Finding Discriminative Filters for Specific Degradations in Blind Super-Resolution Liangbin Xie, XintaoWang, Chao Dong, Zhongang Qi, Ying Shan

Tencent ARC Lab; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

The mechanism of Blind SR Network

Image: Motivation

A unified one-branch network could achieve comparable performance to the twobranch scheme under similar computation budgets.



D Two key questions are investigated

- > Could one-branch networks automatically learn to distinguish degradations as what we specially design in two-branch methods?
- > Are there any small sub-network (i.e., a set of filters) existing for a specific degradation?

□ A diagnostic tool—Filter Attribution Integrated Gradients (FAIG)

In this work, we propose Filter Attribution method based on Integral Gradient (FAIG) to find core filters in a network that make the greatest contribution to the function of a specific degradation removal.

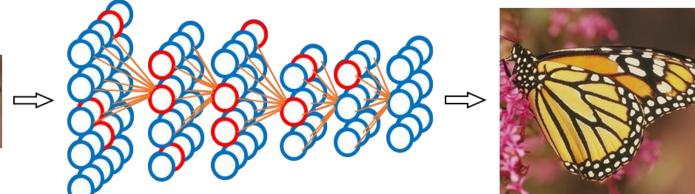
When we mask these discovered filters for a specific degradation, the corresponding function is eliminated, while functions for other degradations are maintained

Filter Attribution Integrated Gradient (FAIG) □ Key idea

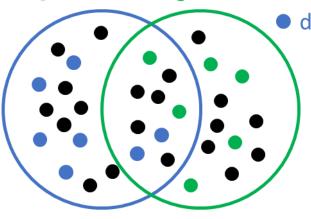
Given the same input, the changes of the network output can be attributed to the changes of network parameters (i.e., filters).

□ Find important filters for one degradation

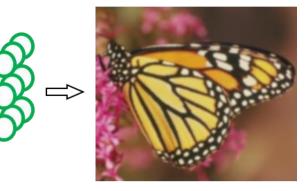
We first quantify the network function of degradation removal by

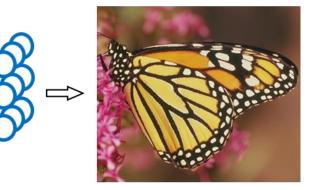

$$\mathcal{L}(\theta, x) = \|F(\theta, x) - x^{gt}\|_2^2$$

Motivated by Integrated Gradient(IG) that accumulates the gradients at all points along a straight-line path, we accumulate gradients along a path


$$\begin{split} \gamma(\alpha) = \bar{\theta} + \alpha \times (\theta - \bar{\theta}) \\ \tau_{\text{AIG}_i}(\theta, x) = \int_{\alpha=0}^1 \frac{\partial \mathcal{L}(\gamma(\alpha), x)}{\partial \gamma(\alpha)_i} \times \frac{\gamma(\alpha)_i}{\partial \alpha} d\alpha \end{split}$$

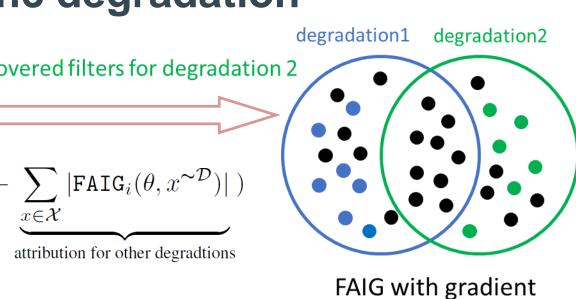
The filters with highest gradient are the most discriminative filters


The substituted network loses the deblur function. □ Find Discriminative filters for specific degradation legradation1 degradation2


• discovered filters for degradation 1 • discovered filters for degradation

$$\mathtt{FAIG}_i^{\mathcal{D}}(\theta) = \frac{1}{\|\mathcal{X}\|} (\underbrace{\sum_{x \in \mathcal{X}} |\mathtt{FAIG}_i(\theta, x^{\mathcal{D}})|}_{x \in \mathcal{X}} - \underbrace{\sum_{x \in \mathcal$$

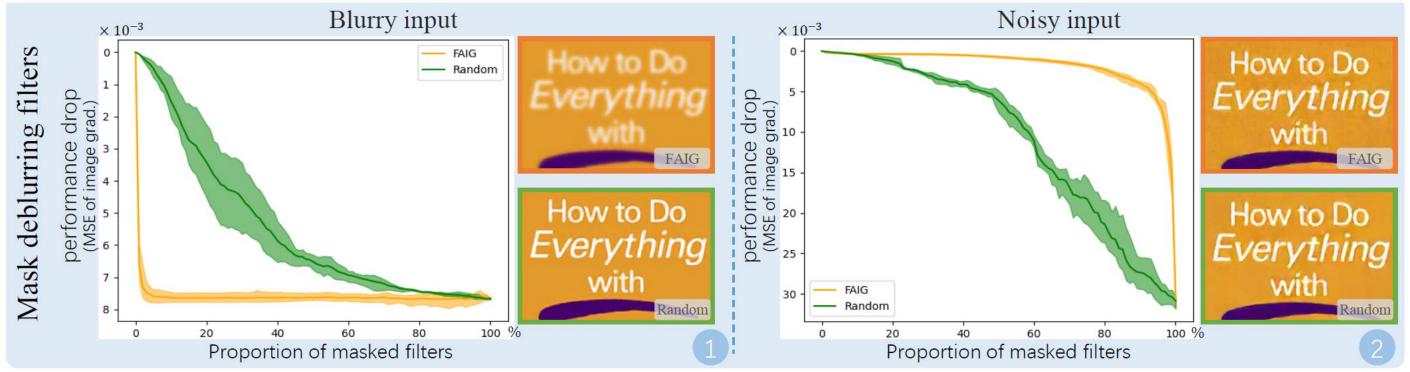
attribution for degradion \mathcal{D}



The **baseline network** $F(\overline{\theta})$ is a pure SR network that cannot remove blur

The **target network** $F(\theta)$ is a re-trained network that can remove blur.

$$\bar{ heta}$$
)

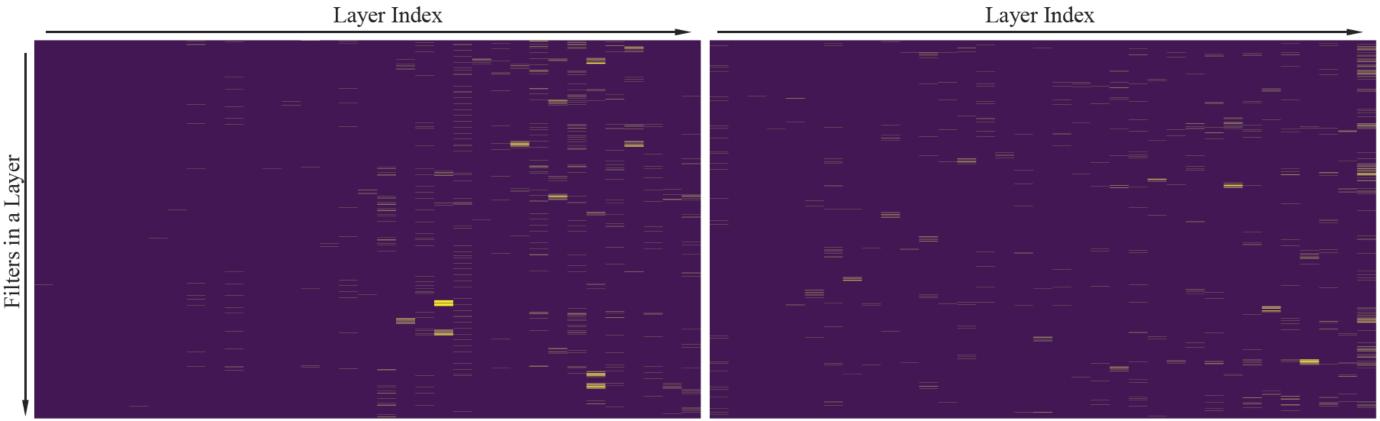

elimination

Tencent腾讯 ARC Applied Research Center

Experiments

□ Mask discovered filters

(10^{-3})		mask 1% disc	overed filters		mask 5% discovered filters			
Input	FAIG (ours)	IG	$ heta-ar{ heta} $	Random	FAIG (ours)	IG	$ heta-ar{ heta} $	Random
Blurry image	6.68 ±0.63	4.31 ± 1.54	0.18 ± 0.13	0.07 ± 0.01	7.53 ±0.24	6.41 ± 0.88	2.16 ± 0.61	0.55 ± 0.32
Noisy image	6.62 ±0.54	4.22 ± 0.44	$0.49 {\pm} 0.10$	$0.04 {\pm} 0.01$	16.28 ±3.84	8.01 ± 1.04	3.25 ± 1.85	$0.19 {\pm} 0.05$


□ Distribution of discovered filters in a network

PSNR(dB)		Re-train 1% filters for deblurring				Re-train 1% filters for denoising			
Input	Upper bound	FAIG	IG	$ heta-ar{ heta} $	Random	FAIG	IG	$ heta-ar{ heta} $	Random
Blurry	29.203	27.889	26.389	26.444	26.691	27.642	26.534	26.444	26.668
	(± 0.021)	(± 0.207)	(± 0.274)	(± 0.097)	(± 0.092)	(± 0.007)	(± 0.125)	(± 0.096)	(± 0.126)
Noisy	26.712	25.268	25.211	25.288	25.239	25.743	25.141	25.275	25.204
	(± 0.008)	(± 0.035)	(± 0.005)	(± 0.044)	(± 0.034)	(± 0.033)	(± 0.116)	(± 0.035)	(± 0.016)

characteristics for specific degradations

D Distribution of discovered filters in a network

Laver Index

Discovered Filters for Deblurring

The deblurring filters are more located in the back part of the network while denoising filters locate more uniformly

code: <u>https://github.com/TencentARC/FAIG</u>

When we mask FAIG-discovered filters for deblurring (even a very small portion), the performance for deblurring drops drastically while the function of denoising is maintained. While the randomly selected filters are non-discriminative

The locations and connections of discovered filters also have discriminative

Discovered Filters for Denoising

group: https://xpixel.group/