The mechanism of Blind SR Network

O Motivation
A unified one-branch network could achieve comparable performance to the two-
branch scheme under similar computation budgets.
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O Two key questions are investigated

» Could one-branch networks automatically learn to distinguish degradations as
what we specially design in two-branch methods?

» Are there any small sub-network (i.e., a set of filters) existing for a specific
degradation?

O A diagnostic tool—Filter Attribution Integrated Gradients (FAIG)

In this work, we propose Filter Attribution method based on Integral Gradient (FAIG)
to find core filters in a network that make the greatest contribution to the function of a
specific degradation removal.
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When we mask these discovered filters for a specific degradation, the corresponding
function is eliminated, while functions for other degradations are maintained

Filter Attribution Integrated Gradient (FAIG)

O Key idea
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Given the same input, the changes of the network output can be attributed to the
changes of network parameters (i.e., filters).
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The target network F(0) is a re-trained network that can remove blur.

O Find important filters for one degradation

We first quantify the network function of degradation removal by

Motivated by Integrated Gradient(IG) that accumulates the gradients at all points
along a straight-line path, we accumulate gradients along a path
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The filters with highest gradient are the most discriminative filters
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The substituted network loses the deblur function.

O Find Discriminative filters for specific degradation

(6) = 7 (3 [FATG:(6,0)] — 37 [FATG(6,2™7)] )
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When we mask FAIG-discovered filters for deblurring (even a very small portion),
the performance for deblurring drops drastically while the function of denoising is
maintained. While the randomly selected filters are non-discriminative
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(10~7) mask 1% discovered filters mask 5% discovered filters

Input FAIG (ours) IG 60 — 0 Random | FAIG (ours) IG 0 — 0 Random
Blurry image | 6.68+0.63  4.314+1.54 0.1840.13 0.07+0.01 | 7.53+0.24  6.41£0.88 2.164+0.61 0.5540.32
Noisy image | 6.62+0.54 4224044 0.49£0.10 0.044+0.01 | 16.284+3.84 8.01£1.04 3.25+1.85 0.19£0.05

] Distribution of discovered filters in a network

PSNR(dB) Re-train 1% filters for deblurring Re-train 1% filters for denoising
Input Upper bound | FAIG IG |0 — 0]  Random FAIG IG |0 — 0]  Random
Blurry 29.203 27.889] 26380 26444 P6.691] | 27.642 26534 26444 26.66%
(=0.021) (£0.207) (£0.274) (£0.097) (E£0.092) | (£0.007) (£0.125) (£0.096) (£0.126)
Noisy 26.712 25.268 25.211 25.288 25.239 25.743 25.141 25.275 25.204
(3=0.008) (0.035) (£0.005) (£0.044) (=x0.034) | (£0.033) (£0.116) (£0.035) (£0.016)

The locations and connections of discovered filters also have discriminative
characteristics for specific degradations

] Distribution of discovered filters in a network
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Discovered Filters for Deblurring

The deblurring filters are more located in the back part of the network while denoising
filters locate more uniformly

Discovered Filters for Denoising

code: https://github.com/TencentARC/FAIG group: https://xpixel.group/
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